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Abstract

Localization of bending waves in a disordered periodic piezoelectric beam is studied in this paper. The equation of the

wave motion for a piezoelectric beam is derived on the assumption of an Euler–Bernoulli beam, and the harmonic solution

is presented. The transfer matrix between two consecutive unit cells in the structures is obtained by using the continuity

conditions. The expression of the localization factor is given by Wolf’s algorithm. Numerical examples are presented and

the effects of several disordered parameters on the localization factor are analyzed. The results show that piezoelectricity

has obvious effects on the passbands and stopbands of the periodic piezoelectric beam. The behavior of wave propagation

and localization in disordered periodic piezoelectric beams can be altered by tuning different structural parameters.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Recently, periodic or nearly periodic structures are extensively used with the development of aerospace, civil
engineering, rotary machines, etc. Practical periodic structures are usually different from ideal ones and may
be disordered due to material defects or manufacturing errors. The perfectly periodic structures have
characteristics of passbands and stopbands. While the disordered periodic structures exhibit localization of
waves and vibration [1]. This behavior enables us to control the propagation of waves and vibration with
particular frequencies through the structures or decrease the vibration of the important sub-structures.
Furthermore, the localization characteristic has numerous potential engineering applications such as acoustic
filters, vibration isolation, noise suppression and design of new transducers. On the other hand, localization
breaks the regularity of the modes of periodic structures, and leads to energy storage. This may influence the
structure strength and service life. So it is necessary to study the wave localization of disordered periodic
structures.

Most previous studies on the problem of wave localization were devoted to disordered periodic purely
elastic structures [2]. As we know, intelligent materials which can perceive the changes of outer environment
and properly respond to these changes are widely applied in structures to satisfy people’s requirements. Many
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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intelligent structures appear in the form of periodic systems [3]. Crawley and Anderson [4] developed
analytical models illustrating the mechanics of Euler–Bernoulli beams with surface mounted and embedded
actuators (waves propagating in these structures are flexural waves). The analytical results were verified by
carrying out static experiments. As far as we know, few studies of wave localization in disordered periodic
piezoelectric structures have been performed. Baz [5] investigated the problems of active vibration control and
wave localization in periodic spring-mass systems controlled by piezoelectric actuators. Thorp et al. [3] studied
localization phenomenon in rods with periodically shunted piezoelectric patches. And the disorder was
introduced by properly tuning the shunted impedance distribution along the rod.

In the present paper, the problem of flexural wave propagation and localization in beams periodically
inserted with piezoelectric materials is studied. As we known, the flexural wave is one of the most important
modes propagating in beams. Use of piezoelectric materials may provide us a way to control the propagation
of the flexural wave or vibration in beam-like structures. As the preliminary study, the present analysis is
performed based on the assumption of an Euler–Bernoulli beam. The equation of the flexural wave motion is
derived and the harmonic solution is given. The transfer matrix of the structure is deduced using the continuity
conditions between two consecutive unit cells. The expression of the localization factor is presented.
Numerical examples are given and the influences of the different disordered parameters on the localization
factor are analyzed. The present study is relevant to the dynamic analysis and design of intelligent structures.

2. Equations of wave motion and their solutions

The uniform beam shown in Fig. 1 is built up by periodically inserting piezoelectric materials in the elastic
beam which has been mentioned in Ref. [4]. The lengths of elastic and piezoelectric parts are a1 and a2,
respectively.

As the preliminary study, we adopt the Euler–Bernoulli beam. The equation of wave motion in the elastic
beam is

E1I1q
4w1=qx4

1 þ r1Aq2w1=qt2 ¼ 0 (1)

and that in the piezoelectric beam is given by (see Appendix A for the detailed derivation)

E2I2q
4w2=qx4

2 þ q2F=qx2
2 þ r2Aq2w2=qt2 ¼ 0, (2)

where wi is the displacement component in z-direction, Ei the Young’s modulus, Ii the inertial moment and ri

the mass density with i ¼ 1 referring to the elastic beams and i ¼ 2 to the piezoelectric beams. A is the area of
the cross-section; F ¼

R
A

ze31E3 dA with e31 being the piezoelectric constant of the piezoelectric materials; and
E3 is the electric field which can be expressed as

E3 ¼ �qf=qz, (3)

where f is the electrical potential function.
Considering the equation r �D ¼ 0 [6], where D is the electric displacement vector, we can get

e15q
2w2=qx2

2 � �11q
2f=qx2

2 ¼ 0. (4)

As in Ref. [7], assume that f is linearly distributed in the cross-section and given by

f ¼ ð1þ azÞjðx2; tÞ, (5)
Fig. 1. Schematic diagram of a beam periodically inserted with piezoelectric materials.
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where a is a parameter and will be eliminated afterwards. Substituting Eq. (5) into Eqs. (3) and (4) yields

E3 ¼ �qf=qz ¼ �ajðx2; tÞ,

e15q
2w2=qx2

2 � �11ð1þ azÞq2j=qx2
2 ¼ 0. ð6Þ

The equation of wave motion in the piezoelectric beam can be obtained from Eqs. (2) and (6):

E2I2q
4w2=qx4

2 þ E2I2bq
2w2=qx2

2 þ r2Aq2w2=qt2 ¼ 0, (7)

where

b ¼ �
e31e15A

�11E2I2

in which e15 and e11 are the piezoelectric constant and dielectric constant, respectively. We look for the
harmonic solution of the form

wiðxi; tÞ ¼W iðxiÞ expð�iotÞ ði ¼ 1; 2Þ, (8)

where i ¼
ffiffiffiffiffiffiffi
�1
p

; o and Wi are the circular frequency and the amplitude of the displacements, respectively.
Substitution of Eq. (8) into Eqs. (1) and (7) leads to

d4W 1=dx4
1 � k2

1W 1 ¼ 0; d4W 2=dx4
2 þ bd2W 2=dx2

2 � k2
2W 2 ¼ 0, (9)

where

k2
i ¼

riAo2

EiI i

ði ¼ 1; 2Þ.

Then the equations of wave motion in elastic and piezoelectric beams can be obtained by solving Eq. (9).
The solutions may be written in the following forms:

W 1 ¼ A1 coshðb1x1Þ þ A2 sinhðb1x1Þ þ A3 cosðb1x1Þ þ A4 sinðb1x1Þ, (10)

W 2 ¼ B1 coshðb2x2Þ þ B2 sinhðb2x2Þ þ B3 cosðb3x2Þ þ B4 sinðb3x2Þ, (11)

where

b1 ¼
ffiffiffiffiffi
k1

p
; b2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
2 þ b2=4

q
� b=2

r
b3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
2 þ b2=4

q
þ b=2

r
;

and Ak and Bk (k ¼ 1,2,3,4) are the unknown coefficients to be determined by the boundary conditions.
It will be convenient to cast Eqs. (10) and (11) into dimensionless forms by introducing the dimensionless

local coordinates, xi ¼ xi/a0, where a0 is the mean value of the lengths of the piezoelectric beams for the
disordered systems (for the perfectly periodic system, a2�a0). Then the dimensionless forms of Eqs. (10) and
(11) are given by

W 1 ¼ A1 coshðp1x1Þ þ A2 sinhðp1x1Þ þ A3 cosðp1x1Þ þ A4 sinðp1x1Þ, (12)

W 2 ¼ B1 coshðp2x2Þ þ B2 sinhðp2x2Þ þ B3 cosðp3x2Þ þ B4 sinðp3x2Þ, (13)

where pj ¼ bja0 (j ¼ 1,2,3); and p1 ¼ b1a0 ¼
ffiffiffiffi
$
p

with $ ¼ o=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=rAa4

0

q
being the dimensionless circular

frequency.
3. Transfer matrix

Suppose that the structure shown in Fig. 1 consists of n unit cells. Each unit cell includes two sub-cells,
namely, the elastic parts (sub-cell 1) and piezoelectric parts (sub-cell 2). The boundary conditions at the left
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and right sides of the two sub-cells in the jth unit cell are written as

W
ðjÞ
iL ¼W

ðjÞ
i ð0Þ; W

ðjÞ
iR ¼W

ðjÞ
i ðz
ðjÞ
i Þ,

yðjÞiL ¼ yðjÞi ð0Þ; yðjÞiR ¼ yðjÞi ðz
ðjÞ
i Þ,

m
ðjÞ
iL ¼ �

EiI i

a2
0

d2W
ðjÞ
i

dx2i
ð0Þ; m

ðjÞ
iR ¼

EiI i

a3
0

d2W
ðjÞ
i

dx2i
ðzðjÞi Þ,

V
ðjÞ
iL ¼

EiI i

a3
0

d3W
ðjÞ
i

dx3i
ð0Þ; V

ðjÞ
iR ¼

EiI i

a3
0

d3W
ðjÞ
i

dx3i
ðzðjÞi Þ, ð14Þ

where i ¼ 1; 2; j ¼ 1; 2; . . . ; n; zi ¼ ai=a0 are the dimensionless lengths of the elastic and piezoelectric parts,
respectively; yi, mi and Vi represent the rotating angle, moment and shear force of the cross-section,
respectively; and the subscripts L and R denote the left and right sides. We introduce the dimensionless
moments and shear forces as follows:

m̄
ðjÞ
iL ¼

a2
0

EiI i

m
ðjÞ
iL ; m̄

ðjÞ
iR ¼

a2
0

EiI i

m
ðjÞ
iR,

V̄
ðjÞ

iL ¼
a3
0

EiI i

V
ðjÞ
iL ; V̄

ðjÞ

iR ¼
a3
0

EiI i

V
ðjÞ
iR. ð15Þ

Substituting Eqs. (12) and (13) into Eqs. (14) and (15) yields

v
ðjÞ
iR ¼ T0iv

ðjÞ
iL ði ¼ 1; 2Þ, (16)

where v
ðjÞ
iL ¼ fW

ðjÞ
iL ; y

ðjÞ
iL ; m̄

ðjÞ
iL ; V̄

ðjÞ

iLg
T and v

ðjÞ
iR ¼ fW

ðjÞ
iR; y

ðjÞ
iR;�m̄

ðjÞ
iR; V̄

ðjÞ

iRg
T are the state vectors at the left and right

sides of the two sub-cells in the jth unit cell. The minus sign of m̄
ðjÞ
iR is necessary when considering the direction

of the moments at the two sides. T0i are 4� 4 transfer matrices of the two sub-cells which will be determined
next. v

ðjÞ
iL and v

ðjÞ
iR may be rewritten as

v
ðjÞ
1L ¼

W
ðjÞ
1L

yðjÞ1L

m̄
ðjÞ
1L

V̄
ðjÞ

1L

2
666664

3
777775
¼ P1

A1

A2

A3

A4

8>>><
>>>:

9>>>=
>>>;
; v

ðjÞ
1R ¼

W
ðjÞ
1R

yðjÞ1R

�m̄
ðjÞ
1R

V̄
ðjÞ

1R

2
666664

3
777775
¼ P01

A1

A2

A3

A4

8>>><
>>>:

9>>>=
>>>;
, (17)

where the elements of P1 are P1
11 ¼ 1, P1

13 ¼ 1, P1
22 ¼ p1, P1

24 ¼ p1, P1
31 ¼ �p2

1, P1
33 ¼ p2

1, P1
42 ¼ p3

1, P1
44 ¼ �p3

1

with the others being zero; the matrix P01 can be written as

P01 ¼

cosh ðp1z
ðjÞ
1 Þ sinh ðp1z

ðjÞ
1 Þ cos ðp1z

ðjÞ
1 Þ sin ðp1z

ðjÞ
1 Þ

p1 sinh ðp1z
ðjÞ
1 Þ p1 cosh ðp1z

ðjÞ
1 Þ �p1 sin ðp1z

ðjÞ
1 Þ p1 cos ðp1z

ðjÞ
1 Þ

�p2
1 cosh ðp1z

ðjÞ
1 Þ �p2

1 sinh ðp1z
ðjÞ
1 Þ p2

1 cos ðp1z
ðjÞ
1 Þ p2

1 sin ðp1z
ðjÞ
1 Þ

p3
1 sinh ðp1z

ðjÞ
1 Þ p3

1 cosh ðp1z
ðjÞ
1 Þ p3

1 sin ðp1z
ðjÞ
1 Þ �p3

1 cos ðp1z
ðjÞ
1 Þ

2
666664

3
777775
.

By means of Eqs. (16) and (17), the transfer matrix T01 in sub-cell 1 can be written as

T01 ¼ P01P
�1
1 . (18)

Similarly, we get the transfer matrix T02 in sub-cell 2:

T02 ¼ T02P
�1
2 , (19)
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in which the elements of P2 are P2
11 ¼ 1, P2

13 ¼ 1, P2
22 ¼ p2, P2

24 ¼ p3, P2
31 ¼ �p2

2, P2
33 ¼ p2

3, P2
42 ¼ p3

2, P2
44 ¼

�p3
3 with the others being zero; the matrix P02 can be written as

P02 ¼

cosh ðp2z
ðjÞ
2 Þ sinh ðp2z

ðjÞ
2 Þ cos ðp3z

ðjÞ
2 Þ sin ðp3z

ðjÞ
2 Þ

p2 sinh ðp2z
ðjÞ
2 Þ p2 cosh ðp2z

ðjÞ
2 Þ �p3 sin ðp3z

ðjÞ
2 Þ p3 cos ðp3z

ðjÞ
2 Þ

�p2
2 cosh ðp2z

ðjÞ
2 Þ �p2

2 sinh ðp2z
ðjÞ
2 Þ p2

3 cos ðp3z
ðjÞ
2 Þ p2

3 sin ðp3z
ðjÞ
2 Þ

p3
2 sinh ðp2z

ðjÞ
2 Þ p3

2 cosh ðp2z
ðjÞ
2 Þ p3

3 sin ðp3z
ðjÞ
2 Þ �p3

3 cos ðp3z
ðjÞ
2 Þ

2
66666664

3
77777775

Considering the relations of v
ðjþ1Þ
1L ¼W1v

ðjÞ
2R, v

ðjÞ
2R ¼ T02v

ðjÞ
2L, v

ðjÞ
2L ¼W2v

ðjÞ
1R and v

ðjÞ
1L ¼ T02v

ðjÞ
1L, the following

equation can be obtained:

v
ðjþ1Þ
1L ¼W1T

0
2W2T

0
1v
ðjÞ
1L, (20)

where the elements of the matrixW1 are W 1
11 ¼ 1, W 1

22 ¼ 1, W 1
33 ¼ E2=E1 and W 1

44 ¼ E2=E1; and those of the
matrix W2 are W 2

11 ¼ 1, W 2
22 ¼ 1, W 2

33 ¼ E1=E2 and W 2
44 ¼ E1=E2 with the other elements in matrix W1 and

W2 being zero.
Eq. (20) shows that the transfer matrix Tj between the two consecutive unit cells has the following form:

Tj ¼W1T
0
2W2T

0
1. (21)
4. Lyapunov exponents and localization factor

The Lyapunov exponent is defined as the average exponential rate of convergence or divergence between
two neighboring phase orbits in the phase space and is considered as a measure of chaoticity [8]. When we
study the wave propagation and localization of periodic structures, using the conception of Lyapunov
exponent offers a measuring index of the attenuation degree of the wave amplitudes. Localization factor, a
similar concept applied to characterize the spatial evolution of a nearly periodic system, characterizes the
average exponential rate of growth or decay of the wave amplitudes [9].

According to the symmetry of periodic structures, it can be proved that Lyapunov exponents occur in pairs
[10]. If the dimension of the transfer matrices is 2m� 2m, then there are m pairs of Lyapunov exponents
having the following property:

g1Xg2X � � �XgmXgmþ1ð¼ �gmÞXgmþ2ð¼ �gm�1ÞX � � �Xg2mð¼ �g1Þ, (22)

The smallest positive Lyapunov exponent gm is defined as the localization factor because gm represents the
wave which has potentially the least amount of decay and propagates longer distance than other waves. So gm

describes the most important decay characters of elastic waves in disordered periodic structures.
The localization factor of the system is given by Wolf’s algorithm [8]:

gm ¼ lim
n!1

1

n

Xn

j¼1

ln v̂
ðjÞ
2R;m

��� ���, (23)

where the vector v̂
ðjÞ
2R;m is defined in what follows.

Assume that the dimension of the transfer matrices is 2m� 2m. In order to calculate the mth Lyapunov
exponent, m orthogonal unit vectors of 2m dimension, u

ð0Þ
1 ; u

ð0Þ
2 ; . . . ; u

ð0Þ
m , are chosen as the initial state vectors.

Eq. (20) is used to calculate the state vectors iteratively. At the kth iteration,

v
ðjÞ
2R;k ¼ Tju

ðj�1Þ
k ðj ¼ 1; 2; . . . ; n; k ¼ 1; 2; . . . ;mÞ, (24)
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where u
ðj�1Þ
k are orthogonal unit vectors, while the vectors v

ðjÞ
2R;k (k ¼ 1; 2; . . . ;m) are usually not orthogonal.

The Gram–Schmidt orthonormalization procedure [10] is used to produce m orthogonal unit vectors

v̂
ðjÞ
2R;1 ¼ v

ðjÞ
2R;1; u

ðjÞ
1 ¼

v̂
ðjÞ
2R;1

v̂
ðjÞ
2R;1

��� ��� ,

v̂
ðjÞ
2R;2 ¼ v

ðjÞ
2R;2 � ðv

ðjÞ
2R;2; u

ðjÞ
1 Þu

ðjÞ
1 ; u

ðjÞ
2 ¼

v̂
ðjÞ
2R;2

v
ðjÞ
2R;2

��� ��� ,

..

.

v̂
ðjÞ
2R;m ¼ v

ðjÞ
2R;m � ðv

ðjÞ
2R;m; u

ðjÞ
m�1Þu

ðjÞ
m�1 � � � � � ðv

ðjÞ
2R;m; u

ðjÞ
1 Þu

ðjÞ
1 ; uðjÞm ¼

v̂
ðjÞ
2R;m

v̂
ðjÞ
2R;m

��� ��� , ð25Þ

where ( � , � ) denotes the dot product.
In this paper m ¼ 2, so the smallest positive Lyapunov exponent g2 is the localization factor. After the

localization factor is calculated, one can find that the wave amplitude attenuates in the form of e�g2 and the
form of energy attenuation is e�2g2 when the wave propagates between two consecutive cells. For the waves
propagating though the whole structure, the amplitude and energy attenuation coefficients are e�ng2 and e�2ng2 .

5. Numerical examples and discussion

In numerical computation, p1 ¼
ffiffiffiffi
$
p

is considered as an independent variable to analyze the effects of
different disordered parameters on the localization factor. Four disordered parameters are considered, the
length a1 of the elastic beams, the length a2 of the piezoelectric beams, the Young’s module E2 and the
piezoelectric coefficient e31. For convenience, let L denote a1, a2, E2 and e31. L is assumed to be a uniformly
distributed random variable with the mean value L0 and variation coefficient d. So L is a random number at
the interval

L 2 ½L0ð1�
ffiffiffi
3
p

dÞ;L0ð1þ
ffiffiffi
3
p

dÞ�. (26)

Introduce a standard uniformly distributed random variable, tA(0,1). Then L can be expressed as

L ¼ L0½1þ
ffiffiffi
3
p

dð2t� 1Þ�. (27)
5.1. Localization factors of the ordered beam with different piezoelectric constant

Consider the beam consisting of the piezoelectric material, PZT-5 H, and the elastic material, aluminum,
alternately. Assume that a1 ¼ 2a0 and a2 ¼ a0, then we have z1 ¼ a1/a0 ¼ 2.0 and z2 ¼ a2/a0 ¼ 1.0. Fig. 2
illustrates the localization factors of the ordered beam with different piezoelectric constant e31. According to
the definition of the localization factors, when localization factors are equal to zero then the corresponding
frequency intervals are known as passbands. When localization factors are positive, then the intervals are
known as band gaps or stopbands. The results show distinguished difference between the purely elastic
periodic beam (e31 ¼ 0) and the piezoelectric one (e31 6¼0). Meanwhile, it can be seen that the localization
factors increase significantly with the decrease of the values of e31. In one word, piezoelectricity has obvious
effects on the passbands and stopbands of the periodic piezoelectric beam.

5.2. Disorder in the length of the elastic parts

Assume that a1 ¼ 2½1þ
ffiffiffi
3
p

dð2t� 1Þ�a0 and a2 ¼ a0, then we have z1 ¼ a1/a0 ¼ 2½1þ
ffiffiffi
3
p

dð2t� 1Þ� and
z2 ¼ a2/a0 ¼ 1. For the Al/PZT-5H system the variation of the localization factor with

ffiffiffiffi
$
p

for some selected
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Fig. 2. Influence of the piezoelectric constant e31 on the localization factors.
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Fig. 3. Influence of the variation coefficient on the localization factors.
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values of d is shown in Fig. 3. We can see that for d ¼ 0 the localization factors are positive in the frequency
interval of

ffiffiffiffi
$
p
2 ð3:1; 4:1Þ and this interval is known as a stopband, while in the interval of

ffiffiffiffi
$
p
2 ð4:1; 4:8Þ the

localization factors are zero and this interval is called a passband. However in the interval of
ffiffiffiffi
$
p
2 ð4:1; 4:8Þ the

localization factors are positive in the case of d6¼0. This is the so-called wave localization phenomenon. Similar
results can be seen in the interval of

ffiffiffiffi
$
p
2 ð5:8; 6:5Þ. It is shown that, with the increase of the variation coefficient,

d, the localization factors are no longer zero in the passbands and the degree of localization will increase.
Suppose that the elastic material is aluminum and the piezoelectric material is PZT-4, PZT-5H and P-7,

respectively. The variation of the localization factors with different materials is shown in Fig. 4 for d ¼ 0.05. It
is seen that the localization behavior is similar for various materials except in higher frequencies. For instance,
the localization factors for the piezoelectric material of PZT-4 are larger than those for other two piezoelectric
materials PZT-5H and P-7, especially in higher frequencies.

5.3. Disorder in the length of the piezoelectric parts

Assume that a1 ¼ 2a0 and a2 ¼ ½1þ
ffiffiffi
3
p

dð2t� 1Þ�a0, then we can have z1 ¼ a1/a0 ¼ 2 and
z2 ¼ a2=a0 ¼ 1þ

ffiffiffi
3
p

dð2t� 1Þ. For the Al/PZT-5H system, the variation of the localization factors with
ffiffiffiffi
$
p
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Fig. 4. Localization factors versus frequency for different piezoelectric materials.
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Fig. 5. Influence of the variation coefficient on the localization factors.
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for some selected values of d is shown in Fig. 5. We find the similar phenomenon as shown in Fig. 3. For
example, at the interval of

ffiffiffiffi
$
p
2 ð4:0; 4:8Þ, the localization factors are zero for the case of d ¼ 0 and this

frequency interval is a passband. But in this passband the localization factors are positive for the case of d 6¼0,
i.e., localization phenomenon appears. Comparing Fig. 3 with Fig. 5 we can find that the localization induced
by the disorder in length (a2) of the piezoelectric beams (see Fig. 5) is more obvious than that induced by the
disorder in length (a1) of the elastic beams (see Fig. 3) in lower frequencies and vise versa in higher frequencies.

Fig. 6 shows the variation of the localization factors with the frequency for different piezoelectric materials
Al/PZT-4, Al/PZT-5H and Al/P-7. Obvious difference is observed between Al/PZT-4 system and the other
two systems which exhibit little difference especially in the high frequencies.

5.4. Disorder in Young’s modulus of the piezoelectric parts

Consider a beam which is formed by aluminum and PZT-5H alternately. We take a1 ¼ 2a0 and a2 ¼ a0 or
equivalently z1 ¼ a1/a0 ¼ 2 and z2 ¼ a2/a0 ¼ 1, and assume the disordered parameter E2 ¼ ½1þ

ffiffiffi
3
p

dð2t�

1Þ�E20 with E20 being the mean Young’s modulus of the sub-cell 2. The localization factors for some selected
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values of the variation coefficient are shown in Fig. 7. Localization phenomenon appears for d 6¼0. It is seen
that for lower frequencies the values of localization factors in the stopbands decrease with the increase of the
variation coefficient. Compared with Fig. 5, the localization behavior induced by the disorder in Young’s
modulus is different from that induced by the disorder in length especially in lower frequencies.

Fig. 8 illustrates the influences of the dimensionless length of the elastic parts on the localization factor for
d ¼ 0. It can be seen that z1 has significant effect on the passbands and stopbands. For example, the intervalffiffiffiffi
$
p
2 ð4:1; 4:8Þ is a passband when z1 ¼ 2.0, but the corresponding interval shifts to

ffiffiffiffi
$
p
2 ð3:2; 3:8Þ when

z1 ¼ 2.5. Generally speaking, decrease in length of the sub-cells will move the passbands or stopbands to the
higher-frequency regions.

5.5. Disorder in piezoelectric constant

Consider Al/PZT-5H system with z1 ¼ a1/a0 ¼ 2.0, z2 ¼ a2/a0 ¼ 1.0 and the disordered parameter e31 ¼

½1þ
ffiffiffi
3
p

dð2t� 1Þ�e310 where e310 is the mean piezoelectric constant of the sub-cell 2, the influence of the
variation coefficient on the localization factors are shown in Fig. 9. The trends of the curves in Fig. 9 are
almost the same as those shown in Fig. 7 which means that disorder in Young’s module E2 or in e31 has similar
effects on the wave propagation and localization of the beam.
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6. Conclusions

In this paper, the problem of wave propagation and localization in a randomly disordered periodic
piezoelectric beam is studied. The following conclusions can be drawn:
(i)
 Turned periodic structures have the properties of the frequency passbands and stopbands and the
localization phenomenon can occur when the structures are mistuned. The degree of the wave localization
and behavior of passbands/stopbands can be changed by tuning the material or geometrical properties of
the structures.
(ii)
 Piezoelectricity has obvious effects on the passbands and stopbands of the periodic piezoelectric beam.
And the value of the piezoelectric constant has influence on the degree of the wave localization.
(iii)
 For different disordered parameters, the localization behaviors are different. The localization induced by
the disorder in length (a2) of the piezoelectric beams is more obvious than that induced by the disorder in
length (a1) of the elastic beams in lower frequencies and vise versa in higher frequencies. And the
localization behavior induced by the disorder in Young’s modulus is different from that induced by the
disorder in length especially in lower frequencies.
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(iv)
 The dimensionless lengths of the elastic parts have considerable influences on the wave propagation and
localization behaviors of the structures. Disorder in Young’s module (E2) or in the piezoelectric constant
(e31) has similar effects on the wave propagation and localization of the piezoelectric beam.
According to the above conclusions, we can design different disordered periodic structures with different
wave propagation and localization behaviors by properly adjusting the values of the structure constants. It
should be noted again that in this paper the beam is modeled as an Euler–Bernoulli beam without considering
the shearing deformation. Thus the analysis presented in this paper can only be accepted as a first rough one.
To obtain more accurate results, it makes more sense to model the beam as a Timoshenko beam instead of an
Euler–Bernoulli beam and this will be considered in our further studies.
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Appendix A

Derivation of Eq. (2) is presented here. The considered material is a piezoelectric solid. For simplification
the subscripts in all formulae are left out.

According to the assumption of the Euler–Bernoulli beam (see Fig. 1), we know that the longitudinal strain
at coordinate (x, z) of the cross-section of the material is

� ¼
z dy
dx

(A.1)

and the curvature of the neutral layer is

1

r
¼

dy
dx

����
����, (A.2)

where r is the radius of the curvature and is non-negative. From Eqs. (A.1) and (A.2) we get

� ¼
z

r
. (A.3)

The constitutive equation of the piezoelectric beam is [5]

s ¼ E�� e31E3. (A.4)

Consider the dynamic equilibrium equations

My ¼

Z
A

zsdA ¼M, (A.5)

where M is the moment of the cross-section. Substitution of Eqs. (A.3) and (A.4) into Eq. (A.5) yields

1

r
¼

M þ
R

A
ze31E3 dA

EI
(A.6)

and the geometrical relationship is

1

r
¼

dy
ds

����
���� ¼ jw00j

ð1þ w02Þ
3=2

. (A.7)

For general beams used in engineering, the lines of deflection are smooth. So w0 is very small and can be
neglected. In the coordinates shown in Fig. 1, the orientations of M and w00 are contrary. So we have the
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following equation based on (A.6) and (A.7),

w00 ¼ �
M þ

R
A

ze31E3 dA

EI
, (A.8)

which can be rewritten in the form

M ¼ �EIw00 �

Z
A

ze31E3 dA. (A.9)

On the other hand, we have the following equilibrium differential equation [11]:

q2M
qx2
þ f ðx; tÞ ¼ rA

q2w

qt2
, (A.10)

where f(x, t) is the external force of the beam. For free vibration, we have

q2M
qx2
¼ rA

q2w

qt2
. (A.11)

Substitution of Eq. (A.9) into Eq. (A.11) yields the equation of wave motion for a piezoelectric beam in the
following form:

EI
q4w
qx4
þ

q2

qx2

Z
A

ze31E3 dA

� �
þ rA

q2w
qt2
¼ 0. (A.12)

Let F ¼
R

A
ze31E3 dA, then we get Eq. (2).
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